[10:30] Performance Analysis for PAM (Lecture Slide 15-11)

- *P*(error) depends on noise power σ^2 , symbol period T_{sym} , symbol amplitude *d*
- In practice, error correcting codes are used to tolerate a certain probability of error
- Gray Coding: choose encoding so that adjacent symbols have one bit of difference

4 PAM example:SymbolTX Symbolof bitsAmplitude01+3d00+d10-d11-3d

 $x_n = a_n +$

 $\underbrace{v_n}_{RV} \leftarrow \begin{array}{l} \text{assuming only impairment is} \\ \text{additive thermal noise} \\ N\left(0, \frac{\sigma^2}{T_{SVm}}\right) \end{array}$

 $\underbrace{P_{\text{PAM}}(\text{error})}_{\text{lower bound}} = \frac{2(M-1)}{\underbrace{\frac{M}{\text{range}[1,2)}}} \underbrace{Q\left(\frac{d}{\sigma}\sqrt{T_{sym}}\right)}_{\text{exponential decay+}}$

Example received symbol amplitudes shown for transmitted symbol amplitude 3*d*

[10:55] Performance analysis for QAM (Lecture Slide 15-12)

- Treat symbol amplitude as a complex number
 - Real part: in phase
 - Imaginary: quadrature
- Transmitted signal is $s(nT_{sym}) = a_n + jb_n = (2i 1)d + j(2k 1)d$ (*i*, *k* $\in \{-1, 0, 1, 2\}$ for 16-QAM)

4 QAM constellation

- Quadrature *q*[*n*] (PAM symbol amplitude)
- In-Phase *i*[*n*] (PAM symbol amplitude)

Symbol of bits	<i>i</i> [<i>n</i>]	q[n]
00	d	d
01	-d	d
10	d	-d
11	-d	-d

[11:05] Performance analysis for 16-QAM (Lecture Slides 15-13 to 15-15)

- Optimal decision algorithm: minimize Euclidian distance
- For rectangular constellation, thresholding is equivalent to minimizing distance
- Threshold at multiples of 2*d* on each axis (midpoint between adjacent values)
- Assumption: noise independent in in-phase and quadrature
- Assumption: all symbols in the constellation are equally likely

Three different types of region are possible

• Type 1: Finite in both dimensions

$$P(\text{correct}|T_1) = \left(1 - 2Q\left(\frac{d}{\sigma}\sqrt{T_{sym}}\right)\right)^2$$

• Type 2: Finite in one dimension

$$P(c|T_2) = \left(1 - Q\left(\frac{d}{\sigma}\sqrt{T_{sym}}\right)\right) \left(1 - 2Q\left(\frac{d}{\sigma}\sqrt{T_{sym}}\right)\right)$$

• Type 3: Quarter plane (infinite in both)

$$P(c|T_3) = \left(1 - Q\left(\frac{d}{\sigma}\sqrt{T_{sym}}\right)\right)$$

$$P_{16 \text{ QAM}}(c) = \frac{4}{16} P(c|T_1) + \frac{4}{16} P(c|T_2) + \frac{8}{16} P(c|T_3)$$

[11:25] QAM constellations (Lecture Slide 15-15)

	Rectangular decision region type			
QAM	Type 1	Type 2	Type 3	
4	0	0	4	
8	0	4	4	
16	4	8	4	
32	12	16	4	
64	36	24	4	

[11:35] Power analysis (Lecture Slide 15-16)

- Assume each symbol is equally likely and the energy in pulse shape is one.
- Lower peak to average power ratio is preferred for power amplifier design
- 4-PAM constellation
 - Amplitudes: $\{-3d, -d, d, 3d\}$
 - Total power = $9d^2 + d^2 + d^2 + 9d^2 = 20d^2$
 - Average power = $\frac{1}{4}$ Total power = $5d^2$
 - \circ Peak to average power ratio = 1.8
- 4-QAM constellation
 - Amplitudes: $\{-d jd, -d + jd, d + jd, d jd\}$
 - Total power = $2d^2 + 2d^2 + 2d^2 + 2d^2 = 8d^2$
 - Average power $=\frac{1}{4}$ Total power $=2d^2$
 - Peak to average power ratio = 1.0
- Higher peak-to-average-power ratio makes the design and part cost for the power amplifier in the analog/RF processing chain more expensive
- Moving from 4-PAM to 4-QAM improves average power, peak power, and ratio

$SNR = \frac{\text{signal power}}{\text{noise nower}}$

	- F
4-PAM	4-QAM
$SNR = \frac{5d^2}{\sigma^2} \text{ (before matched filter)}$ $SNR = \frac{5d^2}{\sigma^2/T_{sym}} \text{ (after matched filter)}$ $\sqrt{SNR} = \sqrt{5}\frac{d}{\sigma}\sqrt{T_{sym}}$ $\frac{d}{\sigma}\sqrt{T_{sym}} = \sqrt{\frac{SNR}{5}}$	$\frac{d}{\sigma}\sqrt{T_{sym}} = \sqrt{\frac{SNR}{2}}$

Please see Handout P <u>comparing 4-PAM and 4-QAM symbol error rates</u>