[10:30] Performance Analysis for PAM (Lecture Slide 15-11)

- $\quad P$ (error) depends on noise power σ^{2}, symbol period $T_{\text {sym }}$, symbol amplitude d
- In practice, error correcting codes are used to tolerate a certain probability of error
- Gray Coding: choose encoding so that adjacent symbols have one bit of difference
4 PAM example:

Symbol of bits	TX Symbol Amplitude
01	$+3 d$
00	$+d$
10	$-d$
11	$-3 d$

[10:55] Performance analysis for QAM (Lecture Slide 15-12)

- Treat symbol amplitude as a complex number
- Real part: in phase
- Imaginary: quadrature
- Transmitted signal is $s\left(n T_{\text {sym }}\right)=a_{n}+j b_{n}=(2 i-1) d+j(2 k-1) d$

$$
(i, k \in\{-1,0,1,2\} \text { for } 16-\mathrm{QAM})
$$

4 QAM constellation

- Quadrature $q[n]$ (PAM symbol amplitude)
- In-Phase $i[n]$ (PAM symbol amplitude)

Symbol of bits	$i[n]$	$q[n]$
00	d	d
01	$-d$	d
10	d	$-d$
11	$-d$	$-d$

[11:05] Performance analysis for 16-QAM (Lecture Slides 15-13 to 15-15)

- Optimal decision algorithm: minimize Euclidian distance
- For rectangular constellation, thresholding is equivalent to minimizing distance
- Threshold at multiples of $2 d$ on each axis (midpoint between adjacent values)
- Assumption: noise independent in in-phase and quadrature
- Assumption: all symbols in the constellation are equally likely

Three different types of region are possible

- Type 1: Finite in both dimensions

$$
P\left(\text { correct } \mid T_{1}\right)=\left(1-2 Q\left(\frac{d}{\sigma} \sqrt{T_{\text {sym }}}\right)\right)^{2}
$$

- Type 2: Finite in one dimension

$$
P\left(\mathrm{c} \mid T_{2}\right)=\left(1-Q\left(\frac{d}{\sigma} \sqrt{T_{\text {sym }}}\right)\right)\left(1-2 Q\left(\frac{d}{\sigma} \sqrt{T_{\text {sym }}}\right)\right)
$$

- Type 3: Quarter plane (infinite in both)

$$
\begin{gathered}
P\left(\mathrm{c} \mid T_{3}\right)=\left(1-Q\left(\frac{d}{\sigma} \sqrt{T_{\text {sym }}}\right)\right)^{2} \quad P_{16 \mathrm{QAM}}(\mathrm{c})=\frac{4}{16} P\left(\mathrm{c} \mid T_{1}\right)+\frac{4}{16} P\left(\mathrm{c} \mid T_{2}\right) \\
+\frac{8}{16} P\left(\mathrm{c} \mid T_{3}\right)
\end{gathered}
$$

[11:25] QAM constellations (Lecture Slide 15-15)

	Rectangular decision region type		
QAM	Type 1	Type 2	Type 3
$\mathbf{4}$	0	0	4
$\mathbf{8}$	0	4	4
$\mathbf{1 6}$	4	8	4
$\mathbf{3 2}$	12	16	4
$\mathbf{6 4}$	36	24	4

[11:35] Power analysis (Lecture Slide 15-16)

- Assume each symbol is equally likely and the energy in pulse shape is one.
- Lower peak to average power ratio is preferred for power amplifier design
- 4-PAM constellation
- Amplitudes: $\{-3 d,-d, d, 3 d\}$
- Total power $=9 d^{2}+d^{2}+d^{2}+9 d^{2}=20 d^{2}$
- Average power $=\frac{1}{4}$ Total power $=5 d^{2}$
- Peak to average power ratio $=1.8$
- 4-QAM constellation
- Amplitudes: $\{-d-j d,-d+j d, d+j d, d-j d\}$
- Total power $=2 d^{2}+2 d^{2}+2 d^{2}+2 d^{2}=8 d^{2}$
- Average power $=\frac{1}{4}$ Total power $=2 d^{2}$
- Peak to average power ratio $=1.0$
- Higher peak-to-average-power ratio makes the design and part cost for the power amplifier in the analog/RF processing chain more expensive
- Moving from 4-PAM to 4-QAM improves average power, peak power, and ratio

$$
S N R=\frac{\text { signal power }}{\text { noise power }}
$$

4-PAM	4-QAM
$S N R=\frac{5 d^{2}}{\sigma^{2}}$ (before matched filter)	
$S N R=\frac{5 d^{2}}{\sigma^{2} / T_{\text {sym }}}$ (after matched filter)	$\frac{d}{\sigma} \sqrt{T_{\text {sym }}}=\sqrt{\frac{S N R}{2}}$
$\sqrt{S N R}=\sqrt{5} \frac{d}{\sigma} \sqrt{T_{\text {sym }}}$	
$\frac{d}{\sigma} \sqrt{T_{\text {sym }}}=\sqrt{\frac{S N R}{5}}$	

- Please see Handout P comparing 4-PAM and 4-QAM symbol error rates

